One person wears the earbuds, while the other holds a phone. The earbud wearer speaks in his or her language — English is the default — and the app translates the talking and plays it aloud on the phone. The person holding the phone responds; this response is translated and played through the earbuds.
Google Translate already has a conversation feature, and its iOS and Android apps let two users speak as it automatically figures out what languages they’re using and then translates them. But background noise can make it hard for the app to understand what people are saying, and also to figure out when one person has stopped speaking and it’s time to start translating.
Pixel Buds get around these problems because the wearer taps and holds a finger on the right earbud while talking. Splitting the interaction between the phone and the earbuds gives each person control of a microphone and helps the speakers maintain eye contact, since they’re not trying to pass a phone back and forth.
The Pixel Buds were widely panned for subpar design . They do look silly, and they may not fit well in your ears. They can also be hard to set up with a phone.
Clunky hardware can be fixed, though. Pixel Buds show the promise of mutually intelligible communication between languages in close to real time. And no fish required. —Rachel Metz
Zero-Carbon Natural Gas
MIGUEL PORLAN
The world is probably stuck with natural gas as one of our primary sources of electricity for the foreseeable future. Cheap and readily available, it now accounts for more than 30 percent of US electricity and 22 percent of world electricity. And although it’s cleaner than coal, it’s still a massive source of carbon emissions.
A pilot power plant just outside Houston, in the heart of the US petroleum and refining industry, is testing a technology that could make clean energy from natural gas a reality. The company behind the 50-megawatt project, Net Power, believes it can generate power at least as cheaply as standard natural-gas plants and capture essentially all the carbon dioxide released in the process.
If so, it would mean the world has a way to produce carbon-free energy from a fossil fuel at a reasonable cost. Such natural-gas plants could be cranked up and down on demand, avoiding the high capital costs of nuclear power and sidestepping the unsteady supply that renewables generally provide.
Net Power is a collaboration between technology development firm 8 Rivers Capital, Exelon Generation, and energy construction firm CB&I. The company is in the process of commissioning the plant and has begun initial testing. It intends to release results from early evaluations in the months ahead.
The plant puts the carbon dioxide released from burning natural gas under high pressure and heat, using the resulting supercritical CO2 as the “working fluid” that drives a specially built turbine. Much of the carbon dioxide can be continuously recycled; the rest can be captured cheaply.
A key part of pushing down the costs depends on selling that carbon dioxide. Today the main use is in helping to extract oil from petroleum wells. That’s a limited market, and not a particularly green one. Eventually, however, Net Power hopes to see growing demand for carbon dioxide in cement manufacturing and in making plastics and other carbon-based materials.
Net Power’s technology won’t solve all the problems with natural gas, particularly on the extraction side. But as long as we’re using natural gas, we might as well use it as cleanly as possible. Of all the clean-energy technologies in development, Net Power’s is one of the furthest along to promise more than a marginal advance in cutting carbon emissions. —James Temple
Perfect Online Privacy
MIGUEL PORLAN
True internet privacy could finally become possible thanks to a new tool that can — for instance — let you prove you’re over 18 without revealing your date of birth, or prove you have enough money in the bank for a financial transaction without revealing your balance or other details. That limits the risk of a privacy breach or identity theft.
The tool is an emerging cryptographic protocol called a zero-knowledge proof. Though researchers have worked on it for decades, interest has exploded in the past year, thanks in part to the growing obsession with cryptocurrencies, most of which aren’t private.
Much of the credit for a practical zero-knowledge proof goes to Zcash, a digital currency that launched in late 2016. Zcash’s developers used a method called a zk-SNARK (for “zero-knowledge succinct non-interactive argument of knowledge”) to give users the power to transact anonymously.
That’s not normally possible in Bitcoin and most other public blockchain systems, in which transactions are visible to everyone. Though these transactions are theoretically anonymous, they can be combined with other data to track and even identify users. Vitalik Buterin, creator of Ethereum, the world’s second-most-popular blockchain network, has described zk-SNARKs as an “absolutely game-changing technology.”
For banks, this could be a way to use blockchains in payment systems without sacrificing their clients’ privacy. Last year, JPMorgan Chase added zk-SNARKs to its own blockchain-based payment system.
For all their promise, though, zk-SNARKs are computation-heavy and slow. They also require a so-called “trusted setup,” creating a cryptographic key that could compromise the whole system if it fell into the wrong hands. But researchers are looking at alternatives that deploy zero-knowledge proofs more efficiently and don’t require such a key. —Mike Orcutt
Genetic Fortune-Telling
DEREK BRAHNEY
One day, babies will get DNA report cards at birth. These reports will offer predictions about their chances of suffering a heart attack or cancer, of getting hooked on tobacco, and of being smarter than average.
The science making these report cards possible has suddenly arrived, thanks to huge genetic studies — some involving more than a million people.
It turns out that most common diseases and many behaviors and traits, including intelligence, are a result of not one or a few genes but many acting in concert. Using the data from large ongoing genetic studies, scientists are creating what they call “polygenic risk scores.”
Though the new DNA tests offer probabilities, not diagnoses, they could greatly benefit medicine. For example, if women at high risk for breast cancer got more mammograms and those at low risk got fewer, those exams might catch more real cancers and set off fewer false alarms.
Pharmaceutical companies can also use the scores in clinical trials of preventive drugs for such illnesses as Alzheimer’s or heart disease. By picking volunteers who are more likely to get sick, they can more accurately test how well the drugs work.
The trouble is, the predictions are far from perfect. Who wants to know they might develop Alzheimer’s? What if someone with a low risk score for cancer puts off being screened, and then develops cancer anyway?
Polygenic scores are also controversial because they can predict any trait, not only diseases. For instance, they can now forecast about 10 percent of a person’s performance on IQ tests. As the scores improve, it’s likely that DNA IQ predictions will become routinely available. But how will parents and educators use that information?
To behavioral geneticist Eric Turkheimer, the chance that genetic data will be used for both good and bad is what makes the new technology “simultaneously exciting and alarming.” —Antonio Regalado
Materials’ Quantum Leap
JEREMY LIEBMAN
The prospect of powerful new quantum computers comes with a puzzle. They’ll be capable of feats of computation inconceivable with today’s machines, but we haven’t yet figured out what we might do with those powers.
One likely and enticing possibility: precisely designing molecules.
Chemists are already dreaming of new proteins for far more effective drugs, novel electrolytes for better batteries, compounds that could turn sunlight directly into a liquid fuel, and much more efficient solar cells.
We don’t have these things because molecules are ridiculously hard to model on a classical computer. Try simulating the behavior of the electrons in even a relatively simple molecule and you run into complexities far beyond the capabilities of today’s computers.
But it’s a natural problem for quantum computers, which instead of digital bits representing 1 s and 0 s use “qubits” that are themselves quantum systems. Recently, IBM researchers used a quantum computer with seven qubits to model a small molecule made of three atoms.
It should become possible to accurately simulate far larger and more interesting molecules as scientists build machines with more qubits and, just as important, better quantum algorithms. —David Rotman
0 comments:
Post a Comment